3.6.65 \(\int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\) [565]

3.6.65.1 Optimal result
3.6.65.2 Mathematica [A] (verified)
3.6.65.3 Rubi [A] (verified)
3.6.65.4 Maple [B] (verified)
3.6.65.5 Fricas [F]
3.6.65.6 Sympy [F]
3.6.65.7 Maxima [F]
3.6.65.8 Giac [F]
3.6.65.9 Mupad [F(-1)]

3.6.65.1 Optimal result

Integrand size = 23, antiderivative size = 237 \[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 a \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 \sqrt {a+b} d}+\frac {2 \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b \sqrt {a+b} d}+\frac {2 a \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

output
2*a*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^ 
(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/ 
d/(a+b)^(1/2)+2*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(( 
a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b) 
)^(1/2)/b/d/(a+b)^(1/2)+2*a*tan(d*x+c)/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)
 
3.6.65.2 Mathematica [A] (verified)

Time = 7.98 (sec) , antiderivative size = 249, normalized size of antiderivative = 1.05 \[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {\sec \left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \left (4 a (a+b) \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {\frac {1}{1+\sec (c+d x)}}-4 b (a+b) \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {\frac {1}{1+\sec (c+d x)}}+a (a-b) \left (\sin \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {3}{2} (c+d x)\right )\right )\right )}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

input
Integrate[Sec[c + d*x]^2/(a + b*Sec[c + d*x])^(3/2),x]
 
output
(Sec[(c + d*x)/2]*Sec[c + d*x]*(4*a*(a + b)*Cos[(c + d*x)/2]^3*Sqrt[(b + a 
*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x 
)/2]], (a - b)/(a + b)]*Sqrt[(1 + Sec[c + d*x])^(-1)] - 4*b*(a + b)*Cos[(c 
 + d*x)/2]^3*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellip 
ticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[(1 + Sec[c + d*x])^(- 
1)] + a*(a - b)*(Sin[(c + d*x)/2] - Sin[(3*(c + d*x))/2])))/(b*(a^2 - b^2) 
*d*Sqrt[a + b*Sec[c + d*x]])
 
3.6.65.3 Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 261, normalized size of antiderivative = 1.10, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3042, 4323, 27, 3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4323

\(\displaystyle \frac {2 \int -\frac {\sec (c+d x) (b+a \sec (c+d x))}{2 \sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}+\frac {2 a \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 a \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\int \frac {\sec (c+d x) (b+a \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (b+a \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}\)

\(\Big \downarrow \) 4493

\(\displaystyle \frac {2 a \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {a \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-(a-b) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {a \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {2 a \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {a \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{a^2-b^2}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {2 a \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {-\frac {2 a (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{a^2-b^2}\)

input
Int[Sec[c + d*x]^2/(a + b*Sec[c + d*x])^(3/2),x]
 
output
-(((-2*a*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[ 
c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + 
b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*(a - b)*Sqrt[a + 
 b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], ( 
a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c 
+ d*x]))/(a - b))])/(b*d))/(a^2 - b^2)) + (2*a*Tan[c + d*x])/((a^2 - b^2)* 
d*Sqrt[a + b*Sec[c + d*x]])
 

3.6.65.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4323
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), 
x_Symbol] :> Simp[a*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*( 
a^2 - b^2))), x] - Simp[1/((m + 1)*(a^2 - b^2))   Int[Csc[e + f*x]*(a + b*C 
sc[e + f*x])^(m + 1)*(b*(m + 1) - a*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[ 
{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 
3.6.65.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1105\) vs. \(2(217)=434\).

Time = 7.38 (sec) , antiderivative size = 1106, normalized size of antiderivative = 4.67

method result size
default \(\text {Expression too large to display}\) \(1106\)

input
int(sec(d*x+c)^2/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-2/d/b/(a+b)/(a-b)*(EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*( 
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1)) 
^(1/2)*a^2*cos(d*x+c)^2+EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2 
))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c) 
+1))^(1/2)*a*b*cos(d*x+c)^2-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^ 
(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d* 
x+c)+1))^(1/2)*a*b*cos(d*x+c)^2-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+ 
b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(co 
s(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)^2+2*EllipticE(cot(d*x+c)-csc(d*x+c),((a- 
b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+ 
c)/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)+2*EllipticE(cot(d*x+c)-csc(d*x+c), 
((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos( 
d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)-2*EllipticF(cot(d*x+c)-csc(d*x 
+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*( 
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)-2*EllipticF(cot(d*x+c)-csc 
(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/ 
2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)+(1/(a+b)*(b+a*cos(d*x+ 
c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1 
/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2+(1/(a+b)*(b+a*cos(d*x+c))/(cos( 
d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(...
 
3.6.65.5 Fricas [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")
 
output
integral(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^2/(b^2*sec(d*x + c)^2 + 2*a 
*b*sec(d*x + c) + a^2), x)
 
3.6.65.6 Sympy [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(sec(d*x+c)**2/(a+b*sec(d*x+c))**(3/2),x)
 
output
Integral(sec(c + d*x)**2/(a + b*sec(c + d*x))**(3/2), x)
 
3.6.65.7 Maxima [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate(sec(d*x + c)^2/(b*sec(d*x + c) + a)^(3/2), x)
 
3.6.65.8 Giac [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate(sec(d*x + c)^2/(b*sec(d*x + c) + a)^(3/2), x)
 
3.6.65.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int(1/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(3/2)),x)
 
output
int(1/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(3/2)), x)